Swine testis cells contain functional heparan sulfate but are defective in entry of herpes simplex virus.

نویسندگان

  • G Subramanian
  • D S McClain
  • A Perez
  • A O Fuller
چکیده

Herpes simplex virus (HSV) enters and infects most cultured cells. We have found that swine testis cells (ST) produce yields of infectious HSV-1 up to four orders of magnitude lower than those of human embryonic lung (HEL) and HEp-2 cells because of a defect in virus entry. For ST cells, virus binding is reduced, DNA from input virus cannot be detected, and virus proteins are not synthesized. Polyethylene glycol treatment of ST cells after exposure to HSV allows viral entry, protein synthesis, and productive infection. Transfection of viral genomic DNA that bypasses the normal entry process produces similar yields of infectious virus from ST, HEL, and HEp-2 cells. Therefore, all three cell lines can support the HSV replicative cycle. Biochemical analyses and inhibition of sulfation by sodium chlorate treatment show that ST cells contain amounts and types of heparan sulfate (HS) similar to those of highly susceptible cells. HSV infection of sodium chlorate-treated HEL and ST cells indicates the presence of a second, non-HS receptor(s) on susceptible HEp-2 and HEL cells that is missing, or not functional, on poorly susceptible ST cells. We conclude that ST cells are defective in HSV entry, contain functional HS, but lack a functional non-HS receptor(s) required for efficient HSV-1 entry. Further, ST cells provide a novel resource that can be used to identify, isolate, and characterize an HSV non-HS receptor(s) and its role in the entry and tropism of this important human pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective entry of herpes simplex virus types 1 and 2 into porcine cells and lack of infection in infant pigs indicate species tropism.

We have determined if a defect at entry of the human pathogen herpes simplex virus type 1 (HSV-1) into cultured porcine cells extends to HSV-2 and if the poor susceptibility of porcine cells for these viruses is indicative of in vivo species tropism. HSV-1 replicates poorly in swine testis (ST) and other porcine cells which lack a functional non-heparan sulphate receptor(s) required for virus e...

متن کامل

Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway.

A novel mouse L-cell mutant cell line defective in the biosynthesis of glycosaminoglycans was isolated by selection for cells resistant to herpes simplex virus (HSV) infection. These cells, termed sog9, were derived from mutant parental gro2C cells, which are themselves defective in heparan sulfate biosynthesis and 90% resistant to HSV type 1 (HSV-1) infection compared with control L cells (S. ...

متن کامل

Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans

The role of cell surface heparan sulfate in herpes simplex virus (HSV) infection was investigated using CHO cell mutants defective in various aspects of glycosaminoglycan synthesis. Binding of radiolabeled virus to the cells and infection were assessed in mutant and wild-type cells. Virus bound efficiently to wild-type cells and initiated an abortive infection in which immediate-early or alpha ...

متن کامل

Herpes Simplex Virus Type-1 (HSV-1) Entry into Human Mesenchymal Stem Cells Is Heavily Dependent on Heparan Sulfate

Hematopoietic stem cells recipients remain susceptible to opportunistic viral infections including herpes simplex virus type-1 (HSV-1). The purpose of this investigation was to analyze susceptibility of human mesenchymal stem cells (hMSCs) to HSV-1 infection and identify the major entry receptor. Productive virus infection in hMSCs was confirmed by replication and plaque formation assays using ...

متن کامل

A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry

Herpes simplex virus type 1 (HSV-1) binds to cells through interactions of viral glycoproteins gB and gC with heparan sulfate chains on cell surface proteoglycans. This binding is not sufficient for viral entry, which requires fusion between the viral envelope and cell membrane. Here, we show that heparan sulfate modified by a subset of the multiple D-glucosaminyl 3-O-sulfotransferase isoforms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 68 9  شماره 

صفحات  -

تاریخ انتشار 1994